Review

Transposase and cointegrase: specialized transposition proteins of the bacterial insertion sequence IS21 and related elements

B. Berger and D. Haas*

Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne (Switzerland), Fax +41216925635, e-mail: Dieter.Haas@lbm.unil.ch

Received 22 August 2000; returned for revision 17 October 2000; accepted 25 October 2000

Abstract. The bacterial insertion sequence IS21 shares with many insertion sequences a two-step, reactive junction transposition pathway, for which a model is presented in this review: a reactive junction with abutted inverted repeats is first formed and subsequently integrated into the target DNA. The reactive junction occurs in IS21-IS21 tandems and IS21 minicircles. In addition, IS21 shows a unique specialization of transposition func-

tions. By alternative translation initiation, the transposase gene codes for two products: the transposase, capable of promoting both steps of the reactive junction pathway, and the cointegrase, which only promotes the integration of reactive junctions but with higher efficiency. This review also includes a survey of the IS21 family and speculates on the possibility that other members present a similar transpositional specialization.

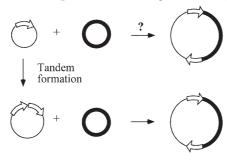
Key words. Transposase; cointegrase; insertion sequence; transposition; IS21 family; IS30; IS911; retrovirus.

Discovery of the insertion sequence IS21

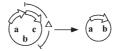
Transposition is defined as the translocation of a DNA fragment, the transposable element, from a donor site to a target site showing no sequence homology. Transpositional recombination events can promote different types of rearrangements such as the formation of deletions, inversions and replicon fusions [1]. When a conjugative plasmid undergoes replicon fusion with a bacterial chromosome, the chromosome can be mobilized from the origin of transfer provided by the plasmid, and conjugative chromosome transfer to recipient bacteria can occur. The ability of many conjugative plasmids to mobilize bacterial chromosomes is related to the activity of transposable elements [2]. The bacterial insertion sequence IS21 was discovered during chromosome mobilization experiments in *Pseudomonas aeruginosa*. The broad-host-range plas-

mid R68.45, which promotes chromosome mobilization in *P. aeruginosa* and about 30 other bacterial species, owes this property to the presence of the tandemly repeated insertion sequence IS21 [designated (IS21)₂]. The parental plasmid R68, which was first isolated from a clinical isolate of *P. aeruginosa*, carries a single copy of IS21. Spontaneous tandem duplication of IS21 in R68 resulted in R68.45. Although R68.45 was obtained under laboratory conditions, there is evidence that (IS21)₂ can also form in nature [3–9]. R68.45 integrates into bacterial chromosomes at many different sites and thereby initiates chromosome transfer almost at random [2, 3, 9].

Transposition pathways of IS21 and tandem formation

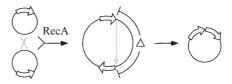

The transposition activities of IS21 manifest themselves in different ways. A single copy of IS21 can generate simple insertions, via a cut-and-paste (nonreplicative)

^{*} Corresponding author.


A. Simple transposition

B. Cointegrate formation (replicon fusion)

C. Deletion through intramolecular transposition



D. Tandem formation

a) Intermolecular transposition

b) Deletion, e. g. from a plasmid homodimer

 Recombination between a minicircle and a copy from a replicon

Figure 1. Overview of transposition pathways of IS21. Bold line, target replicon; thin line, donor replicon; Δ , deletion; arrows in grey represent site-specific recombination events; a cross stands for homologous recombination; figure modified from [39].

mechanism (fig. 1A) [10, 11]. This pathway is thought to involve circularization of IS21 (fig. 1 A, bottom part), an aspect that will be discussed in more detail at the end of this review. A single copy of IS21 can also yield cointegrates at low frequency, probably through spontaneous tandem duplication of the element in the donor replicon before fusion with the target replicon; the resulting cointegrates show a copy of IS21 in the same orientation at both junctions of the fused replicons (fig. 1B, upper part). By contrast, cointegrate formation (replicon fusion) between a replicon carrying (IS21), and a target replicon is very efficient and also follows a cut-and-paste mechanism (fig. 1B, lower part) [10, 12]. The two or three nucleotides forming the IS21-IS21 junction in the tandem are lost during the reaction [12, 13]. Both simple insertion and replicon fusion (fig. 1A, B) generate target duplications of 4 bp, rarely 5, 6 or 7 bp [13–15]. As in other transposition systems, the target duplications flanking the insert are formed by repair enzymes of the host [1, 16].

Although an $(IS21)_2$ structure is quite stable even in a RecA⁺ host [8], deletions of one element can occur sometimes, and flanking DNA can be deleted concomitantly (fig. 1 C), especially after conjugative transfer of an $(IS21)_2$ plasmid into a new host [8]. These deletion pro-

ducts are probably the consequences of intramolecular transposition of IS21.

Several models, which are not mutually exclusive, may explain IS21 tandem formation. Simple intermolecular transposition of an IS21 copy near one end of another IS21 element is one explanation (fig. 1 Da). Alternatively, an IS21 element could transpose next to the copy situated on the other branch in a replication fork. Both mechanisms would involve site-specific recognition between two IS21 termini [10, 17]. An IS21 tandem can also result from a spontaneous deletion of a segment situated between two IS21 copies present in direct orientation [10]. One way to generate a plasmid with two directly oriented IS elements is by RecA-dependent homodimerization (fig. 1 Db). The deletion between two IS21 elements would be a site-specific event as well. A further possibility leading to an (IS21), structure would be a RecA-dependent recombination between an IS21 copy carried by a replicon and an IS21 minicircle (fig. 1 Dc). At present, experimental evidence is available only for the deletion pathway (fig. 1Db) [10]. The other pathways (fig. 1Dac) have not been investigated because an appropriate selection system is lacking. In *P. aeruginosa*, the frequency of $(IS21)_2$ formation in R68 has been estimated to be $\leq 10^{-4}$ [2]. It emerges from the three proposed pathways of tandem formation that in each case, at one time or another, two IS21 ends come together in a site-specific recombination event.

Genetic organization of IS21

IS21, with 2131 bp, is among the largest insertion sequences. Its termini show inverted repeats (IRR and IRL) of 11 bp with one mismatch (fig. 2B, upper part). However, additional, less conserved sequence elements, termed multiple terminal repeats (MTRs), occur at both IS21 termini (fig. 2AB) [15]. The consensus sequence for the MTRs of IS21 is YRCCANYNNNRTNNNNCNNT, where Y and R represent pyrimidines and purines, respectively. Three MTRs are found at the left end, whereas two MTRs occur at the right end of IS21 (fig. 2B, upper part). A potential integration host factor (IHF) recognition site is within MTR-L3 (fig. 2B, upper part).

When two IS21 elements are organized in tandem, they are separated by a junction sequence of two or three variable nucleotides [11, 13]. The abutted IS21 ends form a σ^{70} promoter whose -35 and -10 hexamers are located within IRR and MTR-L1, respectively (fig. 2B, upper part). This promoter drives the expression of the *istAB* genes in the downstream IS21 element [13].

IS21 contains two open reading frames (ORFs), the istAB genes, which are organized in an operon (fig. 2B). Both genes are necessary for efficient and accurate transposition activity [12, 13, 18]. They encode transposition and helper proteins, respectively, whose functions will be discussed below. As other transposable elements, IS21 contains some additional short ORFs on both strands [19], but no product has been associated with them so far. The stop codon of istA and the start codon of istB overlap with one nucleotide in a stop-start configuration (fig. 2B), suggesting that expression of the istA and istB genes may involve translational coupling. By contrast, it seems highly unlikely that transposition of IS21 depends on an IstAB fusion protein (produced by translational frameshifting), because separate expression of istA and istB does not affect the transpositional activity [11].

The function of the MTRs of IS21 has not been assessed. However, in some other transposable elements such as bacteriophage Mu, Tn7 and Tn552, MTRs are involved in the recognition of transposase and in the assembly of multimeric forms of this enzyme [20–25]. In the case of IS21, we note that the spacing of about 23 bp between the MTRs is such that the conserved sequence elements in the MTRs will be exposed to the same surface of the supercoiled DNA double helix [26, 27].

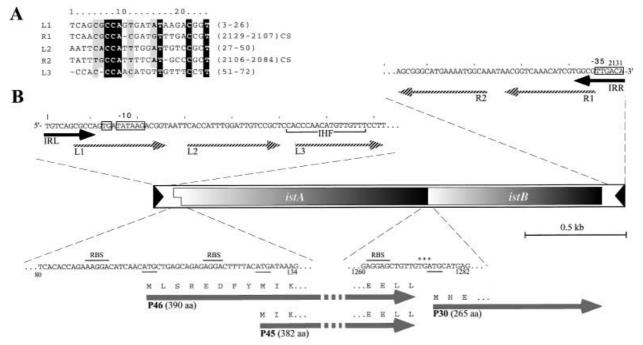


Figure 2. Insertion sequence IS21. (**A**) Alignment of the multiple terminal repeats (MTRs) together with their coordinates; CS, complementary strand; nucleotides outlined in black, identity; nucleotides outlined in grey, pyrimidine or purine; L3 is slightly less conserved and therefore not considered in the determination of the motif. (**B**) Upper part: termini of IS21; IRL and IRR, inverted repeats left and right; L1, L2, L3, R1 and R2, multiple terminal repeats; IHF, sequence resembling the consensus sequence for integration host factor binding; –10 and –35, sequences forming the promoter of the IR-IR junction. At the center: *istA* and *istB*, the ORFs of IS21; black triangles represent the IRs. Lower part: products of the *istAB* genes; P46, the transposase coded by *istA*; P45, the cointegrase coded by *istA*; P30, the helper protein coded by *istB*; RBS, ribosome binding site; the start codons ATG are underlined; ***, stop codon.

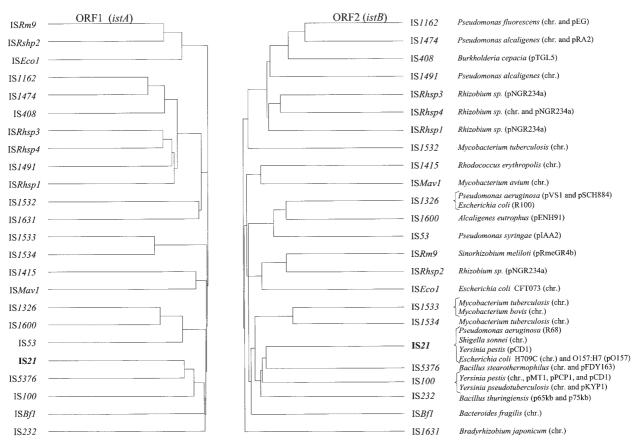


Figure 3. The IS21 family. Dendrogram calculated by the Pileup program (GCG, University of Wisconsin, Madison) for both ORFs; the names of the bacteria refer to the organisms from which the elements have been isolated as a chromosomal copy (chr.) or a plasmid copy (name of the plasmid). The dendrograms obtained by Pileup represent the most similar pairs. The use of this approach is justified by the fact that the presence of divergent regions will not mask the close relatedness of the remainder of the sequences compared, especially of regions containing the active site.

When an IS21-IS21 junction of a linearized plasmid was incubated with overexpressed IstA in a crude extract, about 30 nucleotides from both IS21 ends were protected from nuclease attack [12], suggesting that MTR-L1 and MTR-R1 may interact with IstA during the replicon fusion reaction. If this interpretation is correct, then MTR-L1 might have an additional role in autoregulation of the *istAB* genes: IstA protein could block transcription by binding to MTR-L1 containing the –10 promoter sequence (fig. 2B).

A unique specialization of transposition functions in IS21: transposase and cointegrase

The *istA* gene is essential for both simple insertion and replicon fusion [11]. Two ATG start codons associated with ribosome binding sites (RBS) enable the *istA* gene to generate two products in the same reading frame, IstA(P46) and IstA(P45). These proteins of 46 kDa and 45 kDa, respectively, differ in their N-termini by eight amino acids (fig. 2B, lower part). Like transposases of several trans-

posable elements, P46 and P45 show a helix-turn-helix motif at their N-termini (fig. 5A), probably promoting binding to DNA [13, 28]. The deduced amino acid sequences of IstA(P46) and IstA(P45) show a typical DDE motif (aspartate-122, aspartate-184, glutamate-230 in P46, cf. fig. 5A), which is part of the catalytic domain of retroviral integrases and numerous bacterial transposases [28, 29]. P46 and P45 have distinct functions. These were demonstrated with istA constructs that were engineered to express either IstA(P46) alone or IstA(P45) alone [11]. After overexpression in Escherichia coli, P45 promotes replicon fusion (cointegrate formation) at very high frequencies $(10^{-1} \text{ to } 10^{-2})$ when the substrate is a reactive junction of two abutted IS21 ends on a replicon and the target is a multicopy plasmid (e.g. fig. 1B, lower part) [11]. The optimal size of the IR-IR junction sequence is 2, 3 or 4 bp. With shorter or longer junction sequences (constructed artificially), the efficiency of replicon fusion decreases [11]. IS21 ends joined via an artificial 4-bp (TATA) junction are slightly better substrates than those linked by a natural 2-bp (GT) or 3-bp (ACG) junction [11]. Because of this efficient enzymatic function in coin-

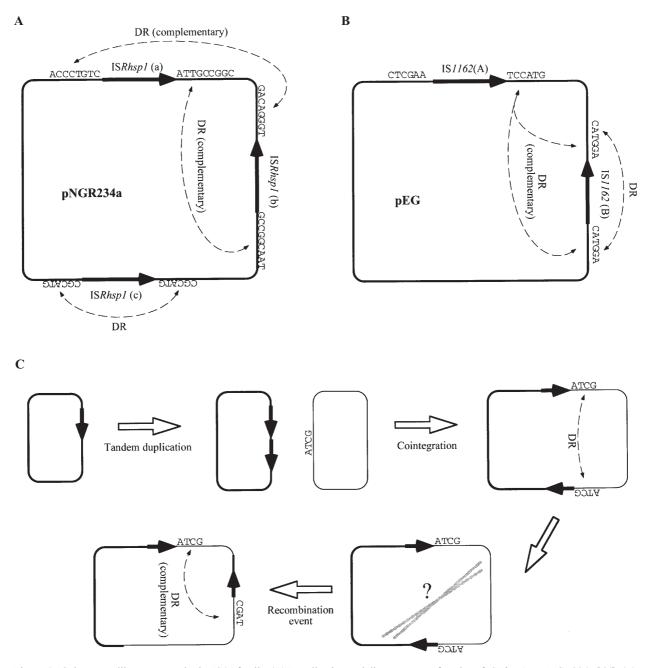
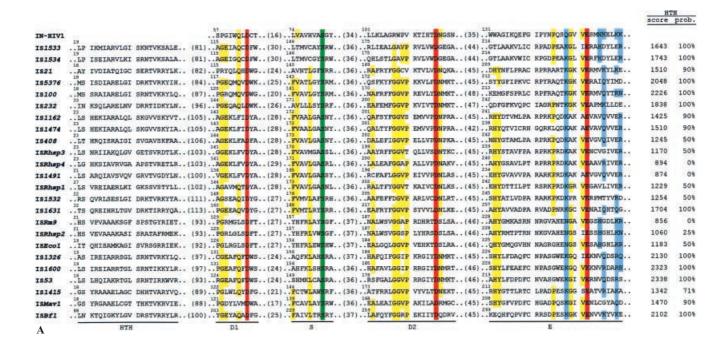



Figure 4. Cointegrate-like structures in the IS21 family. (A) Localization and direct repeats of copies of ISRhsp1 on pNGR234a [66]. (B) Localization and direct repeats of copies of IS1162 on pEG [58]. (C) Proposed molecular mechanisms to explain the complementary direct repeats. The insertion sequences are represented by arrows (leading from IRL to IRR); the sequences of the direct repeats (DR) are shown on the same strand; in the proposed model the tetranucleotide of the target site shown in the proposed model is arbitrary; ?, recombination event inverting a DNA segment.

tegrate formation, P45 has been named cointegrase. By contrast, when the substrate is composed of two distant IS21 ends as in a single IS21 element on a replicon, cointegrase has poor activity: simple insertions (fig. 1 A) are formed at $\leq 10^{-6}$ by this enzyme [11]. P46 displays an equal and intermediate activity (ca. 10^{-3}) in both the simple transposition and the replicon fusion pathways

(figs. 1 A and 1 B, lower part) [11]. For this reason, P46 has been designated transposase.

Mechanistically, the cleavage and strand transfer reactions catalyzed by cointegrase and transposase are probably very similar; we will discuss them at the end of this review. What then might be the role of the extra eight amino acids (MLSERDFY) at the N-terminus of trans-

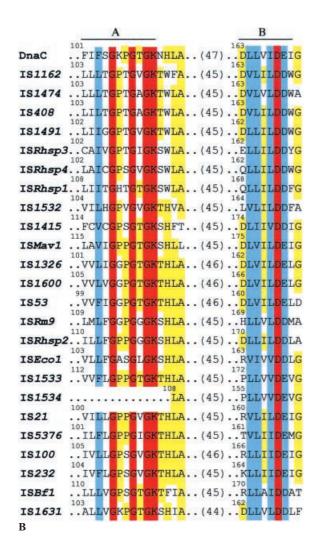


Figure 5. Alignments of the ORFs of the IS21 family. (A) The amino acids of the DDE region of the ORF1 (istA) of the IS21 family members and of IN-HIV1 [87]; HTH, helix-turn-helix motif; D1, D2 and D3, regions including the DDE triad; S, region including a well-conserved serine (see text); on the right, the score of the HTH motif calculated according to [86] and the probability of existence are shown; even if the scores obtained for ISRsp4 and IS1491 predict no HTH motif, the analysis of these sequences by the program hthscan (GCG, University of Wisconsin, Madison) identifies them as probable HTH; the numbers in brackets represent the number of residues between the HTH motif and the first D, the first D and the S, the S and the second D, the second D and the E, respectively; the numbers above the sequences are the coordinates; yellow, residues conserved in the majority of cases; red, residues strictly conserved belonging to the DDE triad; green, serine strictly conserved; blue, basic residues neighboring the E. (B) Motifs of the ORF2 (istB) of the IS21 family members and of DnaC from E. coli [32]; the numbers above the sequences are the coordinates; in brackets are the number of residues not represented; red, strictly conserved residues; blue, conserved similar residues; yellow, residues conserved in the majority of cases; the A domain of IS1534 is deleted.

posase? These residues may help the transposase to bring two IS21 ends close to each other, such that they can form an IR-IR junction which is subsequently inserted into the target DNA. The N-terminal residues of P46 and P45 might also influence the accessibility of the putative transposition donor complex to the target DNA.

Both the simple transposition (fig. 1A) and the replicon fusion (fig. 1B) pathways need a helper protein, IstB, encoded by IS21. This 30-kDa protein appears to have a function similar to that of MuB of bacteriophage Mu and TnsC of transposon Tn7 [30, 31]. IstB has an ATP/GTP binding motif which is also found in DnaC [32] (cf. fig. 5B). The absence of IstB during replicon fusion drastically reduces the efficiency of the reaction and generates atypical target duplications and/or deletions in the target. Thus, IstB is needed for accurate strand transfer and capture of the target DNA [18]. Under optimal conditions the cointegration reaction proceeds at a frequency of 10-1 without being lethal to the E. coli host [11]. It is likely that this frequency represents an initial burst of activity and that a mechanism exists which prevents further insertions of IS21 into the same target DNA, i.e. an immunity mechanism exists. Circumstantial evidence for immunity against multiple IS21 insertion has been reported [17] and confirmed in our laboratory, but the mechanism involved has not been elucidated. By analogy with MuB of phage Mu and TnsC of Tn7, IstB might have a role in establishing immunity [23, 33–36].

Target selection of IS21 in vivo and in vitro

The high replicon fusion activity of cointegrase, assisted by IstB, has been exploited to generate an in vitro system in which a reactive IS21-IS21 junction is carried by a suicide plasmid [18]. Crude *E. coli* cell extracts containing overproduced cointegrase and IstB catalyze replicon fusion between the suicide construct and a multicopy target

replicon at a frequency of ca. 10^{-3} (per target replicon) [15, 18].

The target specificity of IS21 has been investigated by an analysis of replicon fusion products obtained in vivo and in vitro with IstA(P45) and IstB. More than 100 insertion sites have been sequenced [14, 15]. No consensus target sequence has become apparent, in contrast to an earlier proposal based on a small number of insertion sites [37]. However, the IS21 transposition machinery appears to prefer targets displaying an 11-bp periodicity of the dinucleotide AA flanking the insertion sites. This sequence organization, which may confer anisotropic flexibility to the target DNA, suggests that insertions at the center of S-shaped DNA would be favored [B. Berger, T. Junier, D. Haas and A. Stasiak, unpublished results]. A more pronounced target preference showing an intrinsic S-shape has been revealed for IS231A, an element belonging to the IS3 family [38].

A survey of the IS21 family

IS21 is the prototype of a growing family of bacterial insertion sequences. Since publication of previous reviews [39, 40], several new members have been added to the IS21 family. Our first objective here is to describe the current status of this family.

Members of the IS21 family are characterized by two *istA*- and *istB*-like ORFs, by terminal IRs of usually up to 50 bp which are not conserved within the family but generally end with CA, by the presence of MTRs of 15–20 bp at both ends, and by target duplications (direct repeats) of 4–9 nucleotides. These elements are listed in table 1. Elements whose amino acid sequences of the ORFs diverge by less than 5% are defined as isoforms. When dissimilarity is obviously the result of translation frameshifts (due to genuine mutations or possibly due to sequencing errors), nucleotide sequences showing less

	Table 1.	Origins of	f the	insertion	sequences	of the	IS21	family.
--	----------	------------	-------	-----------	-----------	--------	------	---------

IS element ^a	location ^b	Organism	Reference/ accession no.c	DR ^d (bp)	Comments on transpositione°
IS21	R68	Pseudomonas aeruginosa	[13] X14793	4 (5, 6, 7)	simple transposition,
	pO157 chr pB171 chr. chr. RK2 RP1	E. coli O157:H7 E. coli H709C E. coli B171 Salmonella enterica Salmonella typhi diverse	[41] AF74613 (T) [42] [43] AB024946 (T) AJ242964 (T) AB029403 (T) [44]		tandem formation, cointegrate formation (see text)
(IS8)	RP4				
(IS640)	pCD1	Yersinia pestis	[45] AF053946 (T)		
(IS21p)	pCD1	Yersinia pestis	[46] AF074612 (T)		
(IS640)	chr.	Shigella sonnei	[47] X05956 (P)		
IS53	pIAA2	Pseudomonas syringae	[48] M83932	8	_

Table 1 (continued)

IS element ^a	Location ^b	Organism	Reference/ accession no.c	DR ^d (bp)	Comments on transposition ^e
IS100	chr.	Yersinia pestis	[49] AL031866	5	transposition [53]
	pMT1	Yersinia pestis	[45] AF053947		1 2 3
	pPCP1	Yersinia pestis	[50] AF074611 [51] Z32853		
	pr Cr r	Tersinia pestis	[45] AF053945		
	pCD1	Yersinia pestis	[52] X78302		
			[45] AF053946 [46] AF074612		
	?	Yersinia pestis	L19030		
	chr. pKYP1	Yersinia pseudotuberculosis	AJ236887		
	pB171	Yersinia pseudotuberculosis E. coli B171	[54] U59875 [43] AB024946 (T)		
IS232	p65kb p75kb	Bacillus thuringiensis Bacillus thuringiensis	[55] M38370 M77344	8, 6	simple transposition [55]
IS408	pTGL5	Burkholderia cepacia	[56] L09108	8	transposition [57]
IS <i>1162</i>	pEG	Pseudomonas fluorescens	[58] X79443	6, 7	simple transposition [58]
	chr.	Pseudomonas fluorescens	[58]	.,.	replicon fusion without duplication of the element [58] cointegrate-like structure observed (see text)
IS <i>1326</i>	pVS1	Pseudomonas aeruginosa	[59] U38187	ND	_
	pSCH884	Pseudomonas aeruginosa	[59]		
IS <i>1415</i>	R100 chr.	Escherichia coli Rhodococcus erythropolis	AP000342 [60] AF002247	5, 6	simple transposition [60]
IS1474	chr.	Pseudomonas alcaligenes	[61] U67315	4	replicon fusion, cointegrate
					formation with IS <i>1475</i> ? [61]
IS <i>1475</i>	chr.	Pseudomonas alcaligenes	[61] U67315 (T)	ND	replicon fusion, cointegrate formation with IS <i>1474</i> ? [61]
IS <i>1491</i>	chr.	Pseudomonas alcaligenes	[62] U84154	ND	simple transposition [62] replicon fusion, cointegrate formation? [62]
IS <i>1532</i>	chr.	Mycobacterium tuberculosis	[63] Z95389 to Z77165	ND	_
IS <i>1533</i>	chr. chr.	Mycobacterium tuberculosis Mycobacterium bovis	[63] Z83858 [64] AJ238712	5	-
IS <i>1534</i>	chr.	Mycobacterium tuberculosis	[63] Z95436	5	defective by deletion in ORF2?
IS <i>1546</i>	pRE4	Pseudomonas putida	[65]	ND	_
IS1600	pENH91	Alcaligenes eutrophus	[66, 67] D64144	ND	cointegrate-like structure observed, except for the DR [66]
IS <i>1631</i>	chr.	Bradyrhizobium japonicum	[68] AB0110 <i>21</i> (P)	ND	_
IS5376	pFDY163	Bacillus stearothermophilus	[69] X67861	5	transposition [69, 70]
ISAtu1	pTiA6NV	Agrobacterium tumefaciens	AF034854 (T)	ND	_
ISBf1	chr.	Bacteroides fragilis	[71] U05888	ND	_
ISBf2	chr.	Bacteroides fragilis	[71] U05886 (P)	ND	_
ISChe1	chr.	Chelatobacter heintzii	[72] L49438 (P)	ND	_
ISCpi1	chr.	Carnobacterium piscicola	[73] L471 <i>21</i> (T)	ND	_
ISEco1	chr.	Escherichia coli CFT073	[74] AF081285	5	_
IS <i>Lla1</i>	chr.	Lactococcus lactis	AF064765 (P)	ND	-
ISMav1	chr.	Mycobacterium avium	[75] AF125999 A63806	5	_
ISPae1	chr.	Pseudomonas aeruginosa	AF087482 (T)	ND	_
ISPsesp1	chr.	Pseudomonas sp.	[67] AB019033 (T)	ND	=
ISRm9	pRmeGR4b	Sinorhizobium meliloti	[76] Y13432	7	_

Table 1 (continued)

IS element ^a	Location ^b	Organism	Reference/ accession no.c	DR ^d (bp)	Comments on transposition ^e
ISRhsp1	pNGR234a	Rhizobium sp.	[77] AE000081 AE000066 AE000097	6, 8, 9 (see text)	cointegrate-like structure observed (see text)
ISRhsp2	pNGR234a	Rhizobium sp.	[77] AE000079 AE000086 AE000095	6, 7	_
ISRhsp3	pNGR234a	Rhizobium sp.	[77] AE000099	8	_
ISRhsp4	chr. pNGR234a	Rhizobium sp. Rhizobium sp.	[77] AE000090 [78]	7, 8, 9	defective by insertion of other IS elements?
ISSco1	chr.	Streptomyces coelicolor	AL023861 (T?)	ND	_

- ^a Elements shown in brackets are isoforms. IS8 and IS21 are probably identical.
- ^b Location indicates plasmids or chromosomes (chr.).
- ° (P), partial DNA sequence; (T), truncated copy.
- ^d DR, direct repeat = target duplication; ND, not determined.
- ^e Experimental evidence established for the transpositional movements indicated.

than 10% divergence are considered as isoforms. Some of the elements of table 1 are truncated, incompletely sequenced or defective.

As the transposition activity of many members of the IS21 family has not been tested (table 1), it is quite difficult to distinguish between sequencing errors and real mutations which could affect transposition activity. We are aware that the sequence corrections introduced by us (indicated by 'M' in table 2) favor the phylogeny to function.

In the elements listed in table 2, ORF1 (340–585 amino acid residues) is always longer than ORF2 (245–270 amino acid residues). The ORFs are frequently in an overlapping stop-start or start-stop configuration, arrangements that may allow translational coupling. In a few elements, even a superimposition of up to 115 bp has been reported. In no case does there seem to be a motif involved in a programmed frameshift between ORF1 and ORF2.

At both ends of the elements there are imperfect inverted repeats, which include two to seven variably conserved MTRs of about 20 bp each, with a spacing of generally 23-24 bp and occasionally 33-34 or 46-48 bp, i.e. about multiples of 11.3 bp, the supercoiled DNA double helix turn [26, 27]. The members of the IS21 family show a CA dinucleotide or exceptionally a TA dinucleotide at the termini. The terminal CA exists in many bacterial elements which code for transposases carrying a DDE motif, and also at the termini of the integrated forms of retroviruses [28, 29]. In the case of IS21, a CA to GA transversion affects cointegrate formation by a factor of about 50, and a CA to CT transversion reduces activity to a nonmeasurable level [79]. Thus, the two ends observed in the IS21 family differ from one another only in the penultimate, less important nucleotide. The dinucleotides CA and TA are both 'kinkable' [80], and this might facilitate cleavage at their 3' end by integrase, transposase or cointegrase.

The IS21-IS21 junction of R68.45 forms a strong promoter whose activity was demonstrated by an *istA-galK* fusion in the downstream element [13]. Such promoter sequences, discovered in other IS families as well [81], are expected for other members of the IS21 family, e.g. for IS1415 and IS5376. Potential promoters can also be identified upstream of ORF1, e.g. in IS1326 and IS53, but they are less canonical. Whether such promoters exist in reality is uncertain because for no member of the IS21 family, except for IS21 itself, has a reactive IR-IR junction been described.

An alignment of ORF1 and ORF2 proteins of the IS21 family was performed using the Pileup program (fig. 3). For both ORFs, similar subgroups of related elements appear, for instance IS21 with IS5376 and IS100, or IS1326 with IS1600 and IS53. The proximity of IS21 (from various Gram-negative bacteria) and IS5376 (from a Grampositive bacterium) in the dendrogram suggests their mobility, probably via plasmid transfer. Another similar example is provided by the closely related elements IS1532 (found in *Mycobacterium tuberculosis*) and IS1631 (found in *Bradyrhizobium japonicum*) (fig. 3). On the other hand, IS elements from the same organism (e.g. IS1532 and IS1533 from *M. tuberculosis*) need not be closely related to each other.

Data on the transposition activities of IS21 family members are scarce (see references in table 1). Apart from IS21, only IS1162 has been shown to give simple insertion and replicon fusion, the latter without apparent duplication of the element. Simple insertion of some elements, e.g. IS232 and IS1491, and sometimes replicon fusion, e.g. of IS1474 and IS1491, have been observed, but repli-

Table 2. Properties of the elements of the IS21 family.

	DNA	ORF1	ORF2	Alternative start	Intergenic ORF1-	Multiple terminal	Termini ^d		
	[bp]	[aa]ª	[aa] ^a	in ORF1 ^b	ORF2 structure ^c	Left	Right	Left	Right
IS <i>21</i>	2131	390	265	ATG/ATG (8)	Stop-Start TGATG	1 2 3	1 2	CA	CA
IS53	2555	496 M	267 M	ATG/ATG (9)	superposition 8 bp	1 2	1 2	CA	CA
IS100	1954	340	259	ATG/ATG (7)	Stop-Start TGATG	1 2 3	1 2	CA	CA
IS232	2183	431	250	absence	superposition 8 bp	1 2 3	1 2	TA	CA
IS408	>2530	518	>231	ATG/ATG (7)	spacing 16 bp	1 2 3	1 2	CA	CA
IS <i>1162</i>	2634	558	249 M	ATG/ATG (7)	superposition 115 bp	1 2 3 4 5 6	12	CA	CA
IS <i>1326</i>	2470	507	260	GTG/GTG (3)	superposition 11 bp	1 2 3	1 2	CA	CA
IS <i>1415</i>	2580	513	263	ATG/ATG (7)	Stop-Start TGATG	1 2 3 4	1 2 3 4	CA	CA
IS <i>1474</i>	2633	558	249	ATG/ATG (7)	superposition 113 bp	1 2 3 4 5 6 7	1 2	CA	CA
IS <i>1491</i>	>2489	509	251	GTG/ATG (5)	spacing 17 bp	present, but the se the element is app partial		?	?
IS <i>1532</i>	2645	511 M	251	ATG/ATG (7)	spacing 97 bp	1 2 3	1 2	CA	CA
IS <i>1533</i>	2213	413	266 M	absence	Stop-Start TGATG	1 2 3	1 2 3	CA	CA
IS <i>1534</i>	2130	411 M	248	absence	Stop-Start TGATG	1 2	1 2	CA	CA
IS1600	2520	518	264	GTG/GTG (3)	superposition 11 bp	1 2	1 2	CA	CA
IS <i>1631</i>	>2712	585	255	ATG/GTG (11)	spacing 4 bp	present, but the se the element is app partial	1	?	?
IS5376	2107	400	251	ATG/ATG (8)	Start-Stop ATGA	1 2	1 2	CA	CA
ISBf1	2787	582	263	long N-terminal extension	superposition 32 bp	?	?	CA	CA
ISEco1	2407	499 M	250	absence	Start-Stop GTGA	1 2	1 2	TA	TA
ISMav1	2536	500 M	264	ATG/ATG (7)	Start-Stop ATGA	1 2 3	1 2	CA	CA
ISRm9	2798	502	270	absence	Start-Stop ATGA	1 2 3 4	1 2 3	CA	TA
ISRhsp1	2623	516	263	ATG/ATG (11)	Start-Stop GTGA	1 2 3 4	1 2 3 4	CA	CA
ISRhsp2	2641	504	298	absence	Start-Stop ATGA	1 2	1 2 3	CA	TA
ISRhsp3	2786	514	248	TTG/ATG (7)	spacing 11 bp	1 2 3 4 5	1 2 3	CA	CA
ISRhsp4	2599	516 M	245	ATG/ATG (7)	spacing 11 bp	1 2 3 4	1 2 3	CA	CA

^a Where modifications of the nucleotide sequence were introduced, "M" is added under the size of the ORF; aa, amino acid residues.

con fusion products have not been examined. The proximity of some copies of IS 100 in Yersinia pestis or IS 1600 in Alcaligenes eutrophus suggests transposition of composite elements or cointegration, but the direct repeats normally generated by such mechanisms are not apparent. By contrast, the arrangement of IS Rhsp1 and IS 1162 copies on plasmids pNGR234a and pEG, respectively, could

be due to a cointegration mechanism. However, in both cases, the transposition event producing the cointegrates is probably followed by a recombination event inverting a segment carrying one element (fig. 4). These examples illustrate that simple transpositions and replicon fusions can occur among IS21 family members, but these processes have mostly been inferred, not directly observed.

^b Two start codons are given with the size difference (in amino acids residues) between the putative transposases and cointegrases.

^c Description of the region including the stop of ORF1 and the start of ORF2.

d The numbers of the multiple terminal repeats are given only when the sequence of the IS termini is complete; ?, not determined.

Does a cointegrase/transposase specialization exist in other members of the IS21 family?

Here we analyze the genetic organization of the 5' end of ORF1 in various elements, using IS21 as a model. The *istA* gene of IS21 uses two alternative start sites located 24 bp apart to produce transposase and its truncated form, cointegrase (fig. 2B) [11]. The difficulty in determining in silico whether alternative start sites exist for ORF1 arises from the fact that it is difficult to predict the effectiveness of potential ribosome binding sites and, moreover, in different organisms [82–84]. Furthermore, alternative start codons (GUG or UUG instead of AUG) may be used with various degrees of preference in different bacterial species: in *E. coli* AUG (83%) > GUG (14%) > UUG (3%); in *B. subtilis* AUG (78%) > UUG (13%) > GUG (9%) and in *M. tuberculosis* AUG (61%) > GUG (33%) > UUG (5%) [85].

In the absence of stringent criteria, inspection of ORF1 sequences suggests that most members of the IS21 family probably use two alternative translation start sites, spaced 3 to 11 codons apart (table 2). The elements which are devoid of potential alternative sites of translation initiation for ORF1 represent a minority; two of them occur in *Mycobacterium spp.* (IS1533 and IS1534) and four of them show at least one TA terminus (IS232, ISEco1, ISRm9 and ISRhsp2). The eight amino acid residues truncated in IS21 cointegrase are mostly polar (fig. 2B). A similar preference is also found in ORF1 of IS53, IS1415, IS1491, IS1631, ISMav1 and ISRhsp1, but other elements do not conform to this rule. Thus, the polarity observed at the Nterminus of IS21 transposase could be fortuitous.

Domains of ORF1 and ORF2 proteins in the IS21 family

For both *istA* products of IS21 and for all ORF1 products of the members of the IS21 family (except ISRm9), a helix-turn-helix motif can be deduced in the N-terminal part (fig. 5 A). Such a motif is predicted to provide DNA binding activity [86], which is consistent with the observation that numerous bacterial transposases have a DNA binding domain in their N-terminal part [28]. In the C-terminal part, few residues are strictly conserved among all elements of the family (a global alignment not shown, but see [39]).

The catalytic domain highlighted by the DDE triad, which is present in numerous bacterial transposases and retroviral integrases [28, 29, 87], is conserved in ORF1 of the IS21 family (fig. 5 A). A serine residue, which is situated halfway between the two aspartates in retroviral integrases (IN) such as IN HIV-1, is also conserved in the IS21 family (fig. 5A). Thus, four regions can be defined (fig. 5 A), one (S) including the conserved serine residue and

the three others (D1, D2 and E) including the DDE triad and approximately corresponding to the regions referred to as N2, N3 and C1 by other authors [29, 88].

The importance of the DDE residues has been confirmed by directed mutagenesis of several retroviral integrases (for a review see [89]) and of transposases from Mu [90], IS10 [91], IS911 [29] and Tn7 [92]. In the case of IN, mutations of D64, D116 or E152 abolish processing and strand transfer as well as disintegration, an enzymatic activity whose biological significance is not well defined and which dissociates integrated viral DNA from the target. In bacterial transposases, donor cleavage (equivalent to processing) and strand transfer are equally affected by mutations in the DDE triad, which is the catalytic core domain of transposases and integrases through coordination of essential divalent metal ions (especially Mg²⁺) [29]. Although the conserved serine probably is not part of the catalytic site, S81A or S81G mutations in IN seriously impair the activity of the enzyme, probably by affecting folding [93, 94]. Structural analyses of IN of HIV-1 and MuA transposase show that this serine and its threonine homolog in MuA form part of a junction between two β sheets [95, 96]. However, it has been shown for Tn7 that the analogous S304A mutation in TnsB (forming a heterodimeric transposase with TnsA) has no effect on transposition [92, 97].

Other residues of the regions D1, D2 and E are relatively well conserved in the IS21 family (fig. 5 A), and one can find hypothetical functions based on studies of IN. The Q62 residue of IN HIV-1, which interacts with the penultimate nucleotide C at the viral 5' end [98], is present in about half of the elements of the family (fig. 5A). Residue Q148 of IN HIV-1, which also recognizes the 5' end [99], has a lysine counterpart in most elements of the family (fig. 5A). Downstream from E152 of IN HIV-1 and located on the same side of the α helix [100], the residues K156 and K159 are involved in the positioning of the final dinucleotide CA [101]. Although these lysine residues are present in a few elements of the family (including IS21 itself), other basic or polar residues, at identical or close positions, might play the same role. In addition, E152 appears to be involved in the specific recognition of the CA end by IN HIV-1 [99]. In the IS21 family, the spacing between the first aspartate of the DDE triad and the conserved serine is variable, unlike the spacing separating the conserved serine from the second aspartate, which varies between 36 and 37 residues (fig. 5 A). Whereas a number of other transposases and integrases have a DD(35)E arrangement, spacing between the second aspartate and glutamate is larger in IS21 and related elements, extending from 42 to 48 residues (fig. 5A). It is possible that this spacing could form a loop playing a role in the control of the active site, as proposed for MuA where the motif is DD(55)E [96].

The ORF2 proteins of the IS21 family, of which the IstB protein from IS21 is the prototype, are better conserved than ORF1 proteins (fig. 5B; a total alignment of some elements is given in [39]). ORF2 proteins all have an ATP/GTP binding motif, similar to the motifs of the DnaA and DnaC proteins [32]. Other proteins of transposable elements showing the same type of motif are MuB of bacteriophage Mu [31, 102, 103] and TnsC of Tn7 [104], for which ATP binding has been demonstrated, TnpB of Tn552 [25, 105], and TniB of Tn402 (=Tn5090) [106] and Tn5053 [107, 108]. Like DnaC, these proteins are likely to form part of 'molecular matchmakers', which would use ATP for transient conformational changes promoting protein-DNA interactions [109]. These proteins can also be seen as ATP-dependent switches that control the assembly and activation of the transpososomes and may play a role in transposition immunity [35, 110].

Mechanistic aspects of the transposase/cointegrase specialization in the reactive junction pathway

Recent work on several bacterial insertion sequences has provided evidence for an intermediate, the IS minicircle, where the two ends of the transposable element are joined by a few base pairs [40]. IS minicircles and tandems share an important feature, i.e. an IR-IR junction. For IS1, a model including minicircle and tandem formation was proposed 20 years ago [111].

Several insertion sequences have been shown to form tandem and minicircle intermediates; tandem structures of IS30, IS21, IS3, IS2 and IS911 have been described [10, 13, 16, 112–115], whereas minicircles have been found for IS911, IS21, IS3, IS1, IS2 and IS30 [116–124]. These structures are both formed via an interaction between two separated IS ends, and the subsequent transpositional integration of these intermediates follows a similar pathway. These considerations lead us to propose a unifying model (fig. 6), which is based on findings reported for IS911 and, to some extent, for IS21 and IS30. We call this the reactive junction pathway. Similar models have previously been presented by others, especially by the groups of W. Arber, M. Chandler and F. Olasz [16, 29, 81, 113, 124].

IS911 is a member of the IS3 family [40]. The formation of IS911 minicircles (fig. 6, 1st step) requires the OrfAB product, the transposase assembled by a programmed –1 frameshift occurring between two consecutive and partially superimposed ORFs [125], and probably some host functions to resolve the 'figure-eight' molecule, which results from the transfer of a single strand at one end of the IS element to the same strand close to the opposite IS terminus [117, 126]. Although linear forms of IS911 originating from minicircles can give simple insertions in

vitro [127], the main transposition pathway of IS911 seems to proceed directly via minicircles [81, 128]. These are cleaved by the OrfAB product at the reactive IR-IR junction by two consecutive or simultaneous single strand cuts at the 3' ends, which are then transferred to the target DNA (fig. 6, 2nd step). The integration of the minicircles is highly stimulated by the simultaneous presence of the OrfA product, which contains the helix-turn-helix motif but lacks the DD(35)E catalytic domain of OrfAB [81, 128]. Both OrfA and OrfAB contain a leucine zipper motif, which allows OrfAB oligomerization [129] and the regulation of IS911 transposition through interaction of OrfA with OrfAB within a transposition complex [130]. Target capture appears to be an important function of OrfA [130]. Recently, tandem formation by site-specific recombination between the ends of two IS911 copies on the same dimeric plasmid molecule has been shown to occur (as shown in fig. 1Db) and to produce the same type of IR-IR reactive junction as in minicircles [16]. In summary, the OrfAB product is not only necessary for the formation of minicircles but also for their integration into the target DNA.

IS30 is a bacterial insertion sequence for which tandem formation was reported earlier [112]. Members of the IS30 family have one ORF [40]. This codes for a transposase whose N-terminal part interacts specifically with the IRs of the element [131] and whose C-terminal part comprises a DDE motif. The highly reactive and unstable structure (IS30)₂ promotes replicon fusion (cointegration) and many rearrangements, including loss of one of the elements from the dimer (dimer dissolution) and deletion of adjacent DNA [113, 124]. The formation of IS30 minicircles as intermediates in the simple transposition pathway was recently demonstrated [124]. IS30 shows a duality in its specificity of insertion, with a preference for targets adjacent to IRs [132] and a not very rigorous hotspot [37]. Mutant forms of IS30 transposase with deletion of 31 or 81 amino acid residues at the C-terminus are defective for tandem formation, dimer dissolution and replicon fusion, but retain some transpositional activity with a preformed IS30-IS30 junction as a substrate [133], illustrating the fact that the presence of an IR-IR junction can simplify the catalytic task of the transposase by bypassing the 1st step (fig. 6).

IS21 tandems have been studied extensively, as they have high cointegration activity [13]. For unknown reasons, (IS21)₂ is more stable than tandems of other IS elements. This fact has facilitated studies on $(IS21)_2$ -mediated cointegrate formation. Interestingly, the spacing between abutted IS elements in tandems and minicircles corresponds to the target duplication for IS911 (3 bp) and IS30 (2 bp), but this is not the case of the spacing observed in $(IS21)_2$ (2 or 3 bp instead of the standard 4-bp target duplication) [11]. It was realized early that a plasmid carrying $(IS21)_2$ could be considered as a circular transposable

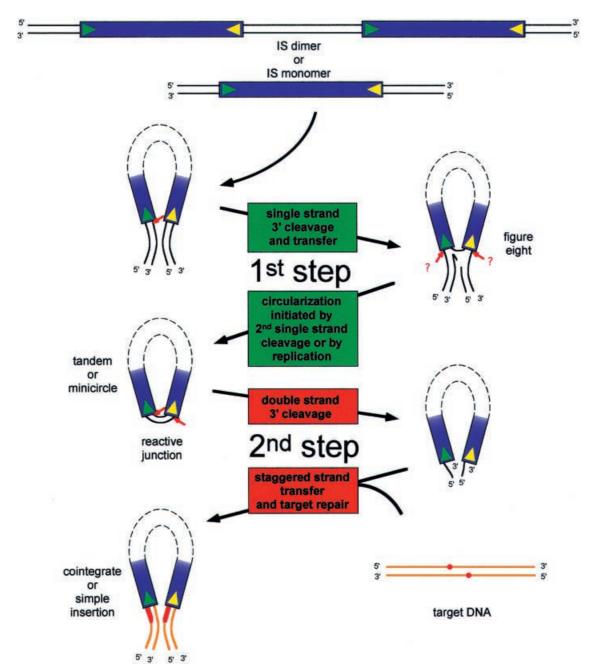


Figure 6. General model for the reactive junction transposition pathway. IS elements are shown in blue with yellow and green inverted repeats, backbone donor DNA in black, target DNA in orange, target duplications resulting from DNA repair of the target in red; red arrows show the single strand 3' cleavages; red dots on the target DNA illustrate the staggered cuts.

element [10]. Such a structure has features similar to those of the circular intermediate structures (minicircles) postulated for other elements. Plasmids containing a single copy of IS21 appear to release minicircular IS21 in $E.\ coli$ at about 10^{-3} with only the IstA function being required [118]. Although the structures of the putative IS21 minicircles have not been entirely elucidated, we presume that they contain an IR-IR junction of the type found in (IS21)₂. This speculation is supported by analogy with tandems and minicircles of IS911 and IS30 [16, 124].

Transposase is 10,000 times more effective than cointegrase at promoting the simple transposition pathway of IS21 [11]. This implies that transposase can bring together two ends of an IS21 copy, e.g. by forming a figure eight (fig. 6, 1st step), whereas cointegrase cannot. The difference resides in the eight N-terminal amino acids of transposase, but remains unexplained mechanistically. Since the formation of an IR-IR junction in a tandem similarly requires the synapsis of two IS21 ends – irrespective of the precise mechanism (fig. 1D) – we presume that transposase catalyzes this step.

Integration of an IR-IR junction into a target proceeds optimally in the presence of cointegrase and IstB [11, 18], and integration of natural minicircles and tandems can be expected to follow the same pattern (fig. 6, 2nd step). With respect to the insertion sequences discussed above, IS*30* transposase artificially truncated at the C-terminus retains cointegrase function and OrfA of IS*911*, like IstB, helps capture and integration into the target.

Integration of an IR-IR junction can also occur in the presence of transposase and IstB, albeit 100 times less efficiently than with cointegrase [11]. Therefore, the specialized cointegrase function can be seen as a means of accelerating the second step of the nonreplicative transposition pathway shown in figure 6, i.e. the reaction of two abutted IS ends with a target.

Concluding remarks

In nonreplicative transposition of insertion sequences and transposons, both strands of the transposable element are freed from the donor backbone at both ends of the element. This process can involve a hairpin intermediate with sequential cleavages of both strands as in Tn5 and Tn10 transposition [134, 135], or the formation of structures with abutted IRs creating a reactive junction, as discussed here and in [136]. The reactive IS21-IS21 tandem, once perceived as a curiosity in the world of insertion sequences [6, 10], now finds a place in the more general reactive junction pathway, which may be used not only by IS21, IS911 and IS30, but also by other transposable elements.

Acknowledgements. We would like to thank M. Chandler, J. Mahillon and A. Stasiak for discussions, and V. Krishnapillai for reading and for comments on the manuscript. The work of B. Berger was supported by grants from the Swiss National Foundation (project 31-45896.95) and the International Brachet Foundation.

- 1 Craig N. L. (1996) Transposition. In: *Escherichia coli* and *Salmonella*, pp. 2339–2362, Neidhardt F. C. (ed.), ASM Press, Washington, DC
- 2 Reimmann C. and Haas D. (1993) Mobilization of chromosomes and nonconjugative plasmids by cointegrative mechanisms. In: Bacterial Conjugation, pp. 137–188, Clewell D. B. (ed.), Plenum Press, New York
- 3 Haas D. and Holloway B. W. (1976) R factor variants with enhanced sex factor activity in *Pseudomonas aeruginosa*. Mol. Gen. Genet. 144: 243–251
- 4 Burkardt H. J., Riess G. and Pühler A. (1979) Relationship of group P1 plasmids revealed by heteroduplex experiments: RP1, RP4, R68 and RK2 are identical. J. Gen. Microbiol. 114: 341–348
- 5 Riess G., Holloway B. W. and Pühler A. (1980) R68.45, a plasmid with chromosome mobilizing ability (Cma), carries a tandem duplication. Genet. Res. **36:** 99–109
- 6 Willetts N. S., Crowther C. and Holloway B. W. (1981) The insertion sequence IS21 of R68.45 and the molecular basis for mobilization of the bacterial chromosome. Plasmid 6: 30–52

- 7 Currier T. C. and Morgan M. K. (1982) Direct DNA repeat in plasmid R68.45 is associated with deletion formation and concomitant loss of chromosome mobilization ability. J. Bacteriol. 150: 251–259
- 8 Haas D. and Riess G. (1983) Spontaneous deletions of the chromosome-mobilizing plasmid R68.45 in *Pseudomonas* aeruginosa PAO. Plasmid 9: 42–52
- 9 Reimmann C., Rella M. and Haas D. (1988) Integration of replication-defective R68.45-like plasmids into the *Pseudo-monas aeruginosa* chromosome. J. Gen. Microbiol. 134: 1515–1523
- 10 Reimmann C. and Haas D. (1987) Mode of replicon fusion mediated by the duplicated insertion sequence IS21 in Escherichia coli. Genetics 115: 619–625
- 11 Schmid S., Seitz T. and Haas D. (1998) Cointegrase, a naturally occurring, truncated form of IS21 transposase, catalyzes replicon fusion rather than simple insertion of IS21. J. Mol. Biol. **282**: 571–583
- 12 Reimmann C. and Haas D. (1990) The *istA* gene of insertion sequence IS21 is essential for cleavage at the inner 3' ends of tandemly repeated IS21 elements in vitro. EMBO J. 9: 4055–4063
- 13 Reimmann C., Moore R., Little S., Savioz A., Willetts N. S. and Haas D. (1989) Genetic structure, function and regulation of the transposable element IS21. Mol. Gen. Genet. 215: 416–424
- 14 Seitz T., Berger B., Nguyen V. T., Tricot C., Villeret V., Schmid S. et al. (2000) Linker insertion mutagenesis based on IS21 transposition: isolation of an AMP-insensitive variant of catabolic ornithine carbamoyltransferase from *Pseudomonas aeruginosa*. Protein Eng. 13: 329–337
- 15 Berger B. (2000) La séquence d'insertion IS21: la famille de cet élément bactérien, sa spécificité d'insertion et son utilisation pour une méthode de linker insertion mutagenesis in vitro. PhD Thesis, University of Lausanne
- 16 Turlan C., Ton-Hoang B. and Chandler M. (2000) The role of tandem IS dimers in IS911 transposition. Mol. Microbiol. 35: 1312–1325
- 17 Danilevich V. N. and Kostiuchenko D. A. (1985) Immunity to repeated transposition of the insertion sequence IS21. [RUSSIAN]. Molekuliarnaia Biologiia 19: 1242–1250
- 18 Schmid S., Berger B. and Haas D. (1999) Target joining of duplicated insertion sequence IS21 is assisted by IstB protein in vitro. J. Bacteriol. 181: 2286–2289
- 19 Galas D. J. and Chandler M. (1989) Bacterial insertion sequences. In: Mobile DNA, pp. 109–162, Berg D. E. and Howe M. M. (eds), ASM Press, Washington, DC
- 20 Craigie R., Mizuuchi M. and Mizuuchi K. (1984) Site-specific recognition of the bacteriophage Mu ends by the MuA protein. Cell 39: 387–394
- 21 Allison R. G. and Chaconas G. (1992) Role of the A proteinbinding sites in the in vitro transposition of Mu DNA. A complex circuit of interactions involving the Mu ends and the transpositional enhancer. J. Biol. Chem. 267: 19963–19970
- 22 Baker T. A. and Mizuuchi K. (1992) DNA-promoted assembly of the active tetramer of the Mu transposase. Genes Dev. 6: 2221–2232
- 23 Arciszewska L. K., Drake D. and Craig N. L. (1989) Transposon Tn7: cis-acting sequences in transposition and transposition immunity. J. Mol. Biol. 207: 35–52
- 24 Arciszewska L. K., McKown R. L. and Craig N. L. (1991) Purification of TnsB, a transposition protein that binds to the ends of Tn7. J. Biol. Chem. 266: 21736–21744
- 25 Rowland S. J., Sherratt D. J., Stark W. M. and Boocock M. R. (1995) Tn.552 transposase purification and in vitro activities. EMBO J. 14: 196–205
- 26 Herzel H., Weiss O. and Trifonov E. N. (1998) Sequence periodicity in complete genomes of archaea suggests positive supercoiling. J. Biomol. Struct. Dyn. 16: 341–345

- 27 Tomita M., Wada M. and Kawashima Y. (1999) ApA dinucleotide periodicity in prokaryote, eukaryote and organelle genomes. J. Mol. Evol. 49: 182–192
- 28 Polard P. and Chandler M. (1995) Bacterial transposases and retroviral integrases. Mol. Microbiol. 15: 13–23
- 29 Haren L., Ton-Hoang B. and Chandler M. (1999) Integrating DNA: transposases and retroviral integrases. Annu. Rev. Microbiol. 53: 245–281
- 30 Craig N. L. (1996) Transposon Tn7. Curr. Topics Microbiol Immunol 204: 27–48
- 31 Mizuuchi K. (1992) Transpositional recombination: mechanistic insights from studies of Mu and other elements. Annu. Rev. Biochem. 61: 1011–1051
- 32 Koonin E. V. (1992) DnaC protein contains a modified ATP-binding motif and belongs to a novel family of ATPases including also DnaA. Nucleic Acids Res. 20: 1997
- 33 Adzuma K. and Mizuuchi K. (1988) Target immunity of Mu transposition reflects a differential distribution of MuB protein. Cell 53: 257–266
- 34 Adzuma K. and Mizuuchi K. (1989) Interaction of proteins located at a distance along DNA: mechanism of target immunity in the Mu DNA strand-transfer reaction. Cell **57:** 41–47
- 35 Yamauchi M. and Baker T. A. (1998) An ATP-ADP switch in MuB controls progression of the Mu transposition pathway. EMBO J. 17: 5509-5518
- 36 Stellwagen A. E. and Craig N. L. (1997) Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition. EMBO J. 16: 6823–6834
- 37 Olasz F., Kiss J., Konig P., Buzas Z., Stalder R. and Arber W. (1998) Target specificity of insertion element IS30. Mol. Microbiol. 28: 691–704
- 38 Hallet B., Rezsohazy R., Mahillon J. and Delcour J. (1994) IS231A insertion specificity: consensus sequence and DNA bending at the target site. Mol. Microbiol. 14: 131–139
- 39 Haas D., Berger B., Schmid S., Seitz T. and Reimmann C. (1996) Insertion sequence IS21: related insertion sequence elements, transpositional mechanisms and application to linker insertion mutagenesis. In: Molecular Biology of Pseudomonads, pp. 238–249, Nakazawa T., Furukawa K., Haas D. and Silver S. (eds), ASM Press, Washington, DC
- 40 Mahillon J. and Chandler M. (1998) Insertion sequences. Microbiol. Mol. Biol. Rev. 62: 725–774
- 41 Burland V., Shao Y., Perna N. T., Plunkett G., Sofia H. J. and Blattner F. R. (1998) The complete DNA sequence and analysis of the large virulence plasmid of *Escherichia coli* O157:H7. Nucleic Acids Res. **26:** 4196–4204
- 42 Kita K., Tsuda J., Kato T., Okamoto K., Yanase H. and Tanaka M. (1999) Evidence of horizontal transfer of the EcoO109I restriction- modification gene to *Escherichia coli* chromosomal DNA. J. Bacteriol. 181: 6822–6827
- 43 Tobe T., Hayashi T., Han C. G., Schoolnik G. K., Ohtsubo E. and Sasakawa C. (1999) Complete DNA sequence and structural analysis of the enteropathogenic *Escherichia coli* adherence factor plasmid. Infect. Immun. 67: 5455–5462
- 44 Pansegrau W., Lanka E., Barth P. T., Figurski D. H., Guiney D. G., Haas D. et al. (1994) Complete nucleotide sequence of Birmingham IncP α plasmids. Compilation and comparative analysis. J. Mol. Biol. 239: 623–663
- 45 Hu P., Elliott J., McCready P., Skowronski E., Garnes J., Kobayashi A. et al. (1998) Structural organization of virulence-associated plasmids of *Yersinia pestis*. J. Bacteriol. 180: 5192–5202
- 46 Perry R. D., Straley S. C., Fetherston J. D., Rose D. J., Gregor J. and Blattner F. R. (1998) DNA sequencing and analysis of the low-Ca²⁺-response plasmid pCD1 of *Yersinia pestis* KIM5. Infect. Immun. 66: 4611–4623
- 47 Matsutani S., Ohtsubo H., Maeda Y. and Ohtsubo E. (1987) Isolation and characterization of IS elements repeated in the bacterial chromosome. J. Mol. Biol. 196: 445–455

- 48 Soby S., Kirkpatrick B. and Kosuge T. (1993) Characterization of an insertion sequence (IS53) located within IS51 on the *iaa*-containing plasmid of *Pseudomonas syringae pv. savastanoi*. Plasmid **29:** 135–141
- 49 Buchrieser C., Prentice M. and Carniel E. (1998) The 102-kilobase unstable region of *Yersinia pestis* comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. J. Bacteriol. 180: 2321–2329
- 50 Lindler L. E., Plano G. V., Burland V., Mayhew G. F. and Blattner F. R. (1998) Complete DNA sequence and detailed analysis of the *Yersinia pestis* KIM5 plasmid encoding murine toxin and capsular antigen. Infect. Immun. 66: 5731–5742
- 51 Podladchikova O. N., Dikhanov G. G., Rakin A. V. and Heesemann J. (1994) Nucleotide sequence and structural organization of *Yersinia pestis* insertion sequence IS100. FEMS Microbiol. Lett. 121: 269–274
- 52 Filippov A. A., Oleinikov P. V., Motin V. L., Protsenko O. A. and Smirnov G. B. (1995) Sequencing of two *Yersinia pestis* IS elements, IS285 and IS100. Contrib. Microbiol. Immunol. **13**: 306–309
- 53 Trukhachev A. L., Podladchikova O. N. and Dikhanov G. G. (1997) Molecular cloning and expression of IS100 insertion element from *Yersinia pestis* in *Escherichia coli* cells [RUSSIAN]. Molekuliarnaia Biologiia 31: 997–1001
- 54 McDonough K. A. and Hare J. M. (1997) Homology with a repeated *Yersinia pestis* DNA sequence IS100 correlates with pesticin sensitivity in *Yersinia pseudotuberculosis*. J. Bacteriol. 179: 2081–2085
- Menou G., Mahillon J., Lecadet M. M. and Lereclus D. (1990) Structural and genetic organization of IS232, a new insertion sequence of *Bacillus thuringiensis*. J. Bacteriol. 172: 6689-6696
- 56 Byrne A. M. and Lessie T. G. (1994) Characteristics of IS401, a new member of the IS3 family implicated in plasmid rearrangements in *Pseudomonas cepacia*. Plasmid **31:** 138–147
- 57 Wood M. S., Lory C. and Lessie T. G. (1990) Activation of the *lac* genes of Tn*951* by insertion sequences from *Pseudomonas cepacia*. J. Bacteriol. **172:** 1719–1724
- 58 Solinas F., Marconi A. M., Ruzzi M. and Zennaro E. (1995) Characterization and sequence of a novel insertion sequence, IS1162, from Pseudomonas fluorescens. Gene 155: 77–82
- 59 Brown H. J., Stokes H. W. and Hall R. M. (1996) The integrons In0, In2, and In5 are defective transposon derivatives. J. Bacteriol. 178: 4429–4437
- 60 Nagy I., Schoofs G., Vanderleyden J. and De Mot R. R. (1997) Transposition of the IS21-related element IS1415 in Rhodococcus erythropolis. J. Bacteriol. 179: 4635–4638
- 61 Yeo C. C. and Poh C. L. (1997) Characterization of IS1474, an insertion sequence of the IS21 family isolated from *Pseudo-monas alcaligenes* NCIB 9867. FEMS Microbiol. Lett. 149: 257–263
- 62 Yeo C. C., Wong D. T. and Poh C. L. (1998) IS1491 from Pseudomonas alcaligenes NCIB 9867: characterization and distribution among Pseudomonas species. Plasmid 39: 187–195
- 63 Gordon S. V., Heym B., Parkhill J., Barrell B. and Cole S. T. (1999) New insertion sequences and a novel repeated sequence in the genome of *Mycobacterium tuberculosis* H37Rv. Microbiology 145: 881–892
- 64 Lefèvre P., Braibant M., Content J. and Gilot P. (1999) Characterization of a *Mycobacterium bovis* BCG insertion sequence related to the IS21 family. FEMS Microbiol. Lett. 178: 211–217
- 65 Eaton R. W., Selifonova O. V. and Gedney R. M. (1998) Isopropylbenzene catabolic pathway in *Pseudomonas putida* RE204: nucleotide sequence analysis of the *ipb* operon and neighboring DNA from pRE4. Biodegradation 9: 119–132
- 66 Ogawa N. and Miyashita K. (1995) Recombination of a 3chlorobenzoate catabolic plasmid from Alcaligenes eutrophus

- NH9 mediated by direct repeat elements. Appl. Environ. Microbiol. **61**: 3788–3795
- 67 Ogawa N. and Miyashita K. (1999) The chlorocatechol-catabolic transposon Tn5707 of *Alcaligenes eutrophus* NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium *Pseudomonas* sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl. Environ. Microbiol. **65:** 724–731
- 68 Isawa T., Sameshima R., Mitsui H. and Minamisawa K. (1999) IS 1631 occurrence in Bradyrhizobium japonicum highly reiterated sequence-possessing strains with high copy numbers of repeated sequences RSα and RSβ. Appl. Environ. Microbiol. 65: 3493–3501
- 69 Xu K., He Z. Q., Mao Y. M., Sheng R. Q. and Sheng Z. J. (1993) On two transposable elements from *Bacillus stearo-thermophilus*. Plasmid 29: 1–9
- 70 Xu K., Mao Y., Shen R. and Sheng Z. (1997) Study on transposition behavior of IS5376 in Bacillus stearothermophilus [CHINESE]. I Chuan Hsueh Pao Acta Genetica Sinica 24: 178–182
- 71 Rogers, M. B., Bennett, T. K., Payne, C. M. and Smith, C. J. (1994) Insertional activation of *cepA* leads to high-level β-lactamase expression in *Bacteroides fragilis* clinical isolates. J. Bacteriol. 176: 4376–4384
- 72 Xu Y., Mortimer M. W., Fisher T. S., Kahn M. L., Brockman F. J. and Xun L. (1997) Cloning, sequencing and analysis of a gene cluster from *Chelatobacter heintzii* ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH: flavin mononucleotide oxidoreductase. J. Bacteriol. 179: 1112–1116
- 73 Quadri L. E., Kleerebezem M., Kuipers O. P., de Vos W. M., Roy K. L., Vederas J. C. et al. (1997) Characterization of a locus from *Carnobacterium piscicola* LV17B involved in bacteriocin production and immunity: evidence for global inducer-mediated transcriptional regulation. J. Bacteriol. 179: 6163–6171
- 74 Guyer D. M., Kao J. S. and Mobley H. L. (1998) Genomic analysis of a pathogenicity island in uropathogenic *Escherichia coli* CFT073: distribution of homologous sequences among isolates from patients with pyelonephritis, cystitis and catheter-associated bacteriuria and from fecal samples. Infect. Immun. 66: 4411–4417
- 75 Tizard M., Bull T., Millar D., Doran T., Martin H., Sumar N. et al. (1998) A low G+C content genetic island in Mycobacterium avium subsp. paratuberculosis and M. avium subsp. silvaticum with homologous genes in Mycobacterium tuberculosis. Microbiology 144: 3413–3423
- 76 Zekri S., Soto M. J. and Toro N. (1998) ISRm4-1 and ISRm9, two novel insertion sequences from Sinorhizobium meliloti. Gene 207: 93-96
- 77 Freiberg C., Fellay R., Bairoch A., Broughton W. J., Rosenthal A. and Perret X. (1997) Molecular basis of symbiosis between *Rhizobium* and legumes. Nature 387: 394–401
- 78 Perret X., Viprey V., Freiberg C. and Broughton W. J. (1997) Structure and evolution of NGRRS-1, a complex, repeated element in the genome of *Rhizobium* sp. strain NGR234. J. Bacteriol. **179**: 7488–7496
- 79 Seitz T. (1996) Linker insertion mutagenesis auf der Basis der Insertionssequenz IS21. PhD Thesis No. 11807, ETH-Zurich,
- 80 McNamara P. T., Bolshoy A., Trifonov E. N. and Harrington R. E. (1990) Sequence-dependent kinks induced in curved DNA. J. Biomol. Struct. Dyn. 8: 529-538
- 81 Ton-Hoang B., Betermier M., Polard P. and Chandler M. (1997) Assembly of a strong promoter following IS*911* circularization and the role of circles in transposition. EMBO J. **16:** 3357–3371
- 82 Hannenhalli S. S., Hayes W. S., Hatzigeorgiou A. G. and Fickett J. W. (1999) Bacterial start site prediction. Nucleic Acids Res. 27: 3577–3582

- 83 Vellanoweth R. L. and Rabinowitz J. C. (1992) The influence of ribosome-binding-site elements on translational efficiency in *Bacillus subtilis* and *Escherichia coli* in vivo. Mol. Microbiol. **6:** 1105–1114
- 84 de Smit M. H. and van Duin J. (1994) Translational initiation on structured messengers. Another role for the Shine-Dalgarno interaction. J. Mol. Biol. 235: 173–184
- 85 Rocha E. P., Danchin A. and Viari A. (1999) Analysis of long repeats in bacterial genomes reveals alternative evolutionary mechanisms in *Bacillus subtilis* and other competent prokaryotes. Mol. Biol. Evol. 16: 1219–1230
- 86 Dodd I. B. and Egan J. B. (1990) Improved detection of helixturn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res. 18: 5019–5026
- 87 Andrake, M. D. and Skalka, A. M. (1996) Retroviral integrase, putting the pieces together. J. Biol. Chem. **271**: 19633–19636
- 88 Rezsohazy R., Hallet B., Delcour J. and Mahillon J. (1993) The IS4 family of insertion sequences: evidence for a conserved transposase motif. Mol. Microbiol. 9: 1283–1295
- 89 Katz R. A. and Skalka A. M. (1994) The retroviral enzymes. Annu. Rev. Biochem. 63: 133–173
- 90 Baker T. A. and Luo L. (1994) Identification of residues in the Mu transposase essential for catalysis. Proc. Natl. Acad. Sci. USA 91: 6654–6658
- 91 Junop M. S. and Haniford D. B. (1997) Factors responsible for target site selection in Tn10 transposition: a role for the DDE motif in target DNA capture. EMBO J. 16: 2646–2655
- 92 Sarnovsky R. J., May E. W. and Craig N. L. (1996) The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products. EMBO J. 15: 6348–6361
- 93 van Gent D. C., Groeneger A. A. and Plasterk R. H. (1992) Mutational analysis of the integrase protein of human immunodeficiency virus type 2. Proc. Natl. Acad. Sci. USA 89: 9598–9602
- 94 Katz R. A., Mack J. P., Merkel G., Kulkosky J., Ge Z., Leis J. et al. (1992) Requirement for a conserved serine in both processing and joining activities of retroviral integrase. Proc. Natl. Acad. Sci. USA 89: 6741–6745
- 95 Dyda F., Hickman A. B., Jenkins T. M., Engelman A., Craigie R. and Davies D. R. (1994) Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266: 1981–1986
- 96 Rice P. and Mizuuchi K. (1995) Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 82: 209–220
- 97 Hickman A. B., Li Y., Mathew S. V., May E. W., Craig N. L. and Dyda F. (2000) Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Mol. Cell 5: 1025–1034
- 98 Esposito D. and Craigie R. (1998) Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction. EMBO J. 17: 5832–5843
- 99 Gerton J. L., Ohgi S., Olsen M., DeRisi J. and Brown P. O. (1998) Effects of mutations in residues near the active site of human immunodeficiency virus type 1 integrase on specific enzyme-substrate interactions. J. Virol. 72: 5046–5055
- 100 Goldgur Y., Dyda F., Hickman A. B., Jenkins T. M., Craigie R. and Davies, D. R. (1998) Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Proc. Natl. Acad. Sci. USA 95: 9150–9154
- 101 Jenkins T. M., Esposito D., Engelman A. and Craigie R. (1997) Critical contacts between HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking. EMBO J. 16: 6849–6859
- 102 Miller J. L., Anderson S. K., Fujita D. J., Chaconas G., Baldwin D. L. and Harshey R. M. (1984) The nucleotide sequence

- of the B gene of bacteriophage Mu. Nucleic Acids Res. 12: 8627-8638
- 103 Mizuuchi K. and Craigie R. (1986) Mechanism of bacteriophage Mu transposition. Annu. Rev. Genet. 20: 385–429
- 104 Gamas P. and Craig N. L. (1992) Purification and characterization of TnsC, a Tn7 transposition protein that binds ATP and DNA. Nucleic Acids Res. 20: 2525-2532
- 105 Rowland S. J. and Dyke K. G. (1990) Tn552, a novel transposable element from *Staphylococcus aureus*. Mol. Microbiol. 4: 961–975
- 106 Rådström P., Sköld O., Swedberg G., Flensburg J., Roy P. H. and Sundström L. (1994) Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. J. Bacteriol. 176: 3257–3268
- 107 Kholodii G. Y., Gorlenko Z. M., Lomovskaya O. L., Mindlin S. Z., Yurieva O. V. and Nikiforov V. G. (1993) Molecular characterization of an aberrant mercury resistance transposable element from an environmental *Acinetobacter* strain. Plasmid 30: 303–308
- 108 Kholodii G. Y., Yurieva O. V., Lomovskaya O. L., Gorlenko Z. M., Mindlin S. Z. and Nikiforov V. G. (1993) Tn5053, a mercury resistance transposon with integron's ends. J. Mol. Biol. 230: 1103-1107
- 109 Sancar A. and Hearst J. E. (1993) Molecular matchmakers. Science 259: 1415–1420
- 110 Stellwagen A. E. and Craig N. L. (1998) Mobile DNA elements: controlling transposition with ATP-dependent molecular switches. Trends Biochem. Sci. 23: 486–490
- 111 Read H. A., Das Sarma S. and Jaskunas S. R. (1980) Fate of donor insertion sequence IS *I* during transposition. Proc. Natl. Acad. Sci. USA 77: 2514–2518
- 112 Dalrymple B. (1987) Novel rearrangements of IS30 carrying plasmids leading to the reactivation of gene expression. Mol. Gen. Genet. 207: 413–420
- 113 Olasz F., Stalder R. and Arber W. (1993) Formation of the tandem repeat (IS30)₂ and its role in IS30-mediated transpositional DNA rearrangements. Mol. Gen. Genet. 239: 177–187
- 114 Spielmann-Ryser J., Moser M., Kast P. and Weber H. (1991) Factors determining the frequency of plasmid cointegrate formation mediated by insertion sequence IS3 from *Escherichia coli*. Mol. Gen. Genet. 226: 441–448
- 115 Szeverenyi I., Bodoky T. and Olasz F. (1996) Isolation, characterization and transposition of an (IS2)₂ intermediate. Mol. Gen. Genet. 251: 281–289
- 116 Polard P., Prère M. F., Fayet O. and Chandler M. (1992) Transposase-induced excision and circularization of the bacterial insertion sequence IS911. EMBO J. 11: 5079–5090
- 117 Polard P. and Chandler M. (1995) An in vivo transposase-catalyzed single-stranded DNA circularization reaction. Genes Dev. 9: 2846–2858
- 118 Schmid S. (1993) Die Insertionssequenz IS21: Entwicklung eines In-vitro-Integrationssystems. PhD Thesis No. 10197, ETH-Zürich
- 119 Sekine Y., Eisaki N. and Ohtsubo E. (1994) Translational control in production of transposase and in transposition of insertion sequence IS3. J. Mol. Biol. 235: 1406–1420

- 120 Sekine Y., Aihara K. and Ohtsub, E. (1999) Linearization and transposition of circular molecules of insertion sequence IS3. J. Mol. Biol. 294: 21–34
- 121 Turlan C. and Chandler M. (1995) IS*I*-mediated intramolecular rearrangements: formation of excised transposon circles and replicative deletions. EMBO J. **14:** 5410–5421
- 122 Sekine Y., Eisaki N., Kobayashi K. and Ohtsubo E. (1997) Isolation and characterization of IS*I* circles. Gene **191**: 183–190
- 123 Lewis L. A. and Grindley N. D. F. (1997) Two abundant intramolecular transposition products, resulting from reactions initiated at a single end, suggest that IS2 transposes by an unconventional pathway. Mol. Microbiol. 25: 517–529
- 124 Kiss J. and Olasz F. (1999) Formation and transposition of the covalently closed IS30 circle: the relation between tandem dimers and monomeric circles. Mol. Microbiol. 34: 37–52
- 125 Chandler M. and Fayet O. (1993) Translational frameshifting in the control of transposition in bacteria. Mol. Microbiol. 7: 497–503
- 126 Polard P., Ton-Hoang B., Haren L., Betermier M., Walczak R. and Chandler M. (1996) IS911-mediated transpositional recombination in vitro. J. Mol. Biol. 264: 68–81
- 127 Ton-Hoang B., Polard P., Haren L., Turlan C. and Chandler M. (1999) IS911 transposon circles give rise to linear forms that can undergo integration in vitro. Mol. Microbiol. 32: 617–627
- 128 Ton-Hoang B., Polard P. and Chandler M. (1998) Efficient transposition of IS911 circles in vitro. EMBO J. 17: 1169–1181
- 129 Haren L., Polard P., Ton-Hoang B. and Chandler M. (1998) Multiple oligomerisation domains in the IS911 transposase: a leucine zipper motif is essential for activity. J. Mol. Biol. 283: 29–41
- 130 Haren L., Normand C., Polard P., Alazard R. and Chandler M. (2000) IS911 transposition is regulated by protein-protein interactions via a leucine zipper motif. J. Mol. Biol. 296: 757-768
- 131 Stalder R., Caspers P., Olasz F. and Arber W. (1990) The N-terminal domain of the insertion sequence 30 transposase interacts specifically with the terminal inverted repeats of the element. J. Biol. Chem. **265**: 3757–3762
- 132 Olasz F., Farkas T., Kiss J., Arini A. and Arber W. (1997) Terminal inverted repeats of insertion sequence IS30 serve as targets for transposition. J. Bacteriol. 179: 7551–7558
- 133 Olasz F., Farkas T., Stalder R. and Arber W. (1997) Mutations in the carboxy-terminal part of IS30 transposase affect the formation and dissolution of (IS30)₂ dimer. FEBS Lett. 413: 453-461
- 134 Kennedy A. K., Guhathakurta A., Kleckner N. and Haniford D. B. (1998) Tn10 transposition via a DNA hairpin intermediate. Cell 95: 125–134
- 135 Bhasin A., Goryshin I. Y. and Reznikoff W. S. (1999) Hairpin formation in Tn5 transposition. J. Biol. Chem. 274: 37021– 37029
- 136 Turlan C. and Chandler M. (2000) Playing second fiddle: second-strand processing and liberation of transposable elements from donor DNA. Trends Microbiol. 8: 268–274